Loading Data … please wait...

Category: Companies

ESA and Thales Alenia Space Italy (TAS-I) authorize HPS to develop the large deployable reflector subsystem “LEA” for the Copernicus mission CIMR

It is official today, 02.12.2020: Europe is going to develop a new independent technology in the European space sector. Thales Alenia Space Italy has been selected by ESA and the European Commission as the Satellite Prime for the Copernicus mission CIMR contract. At the same time, HPS Germany, as leader of an SME-oriented consortium of 15 companies from seven countries (main partners are LSS, vonHoerner&Sulger and RUAG), were selected to develop the “Large Deployable Reflector Subsystem” (LDRS) called “LEA-K8r”. This large, 8-meter diameter reflector will be deployed in space and rotates about a non-symmetrical axis: a world first! Today, with this contract signature, HPS and the European consortium have been authorized to start the development with the phases B2/C/D.

The CIMR-mission, in the context of the Copernicus Earth Observation Programs of the European Commission, provides a significant contribution to the „Integrated European Policy for the Arctic“, whose objective is an improved understanding of the effects of climate change, especially in the Arctic region, and thus will establish key requirements for the Arctic communities. The CIMR-mission will provide improved continuity (sub-daily) in the monitoring of floating sea ice in terms of spatial and temporal resolution. In addition, the instruments will provide global coverage of sea surface temperature measurements, but with a specific focus on the Polar Regions.

Authorized was now the first tranche with 23.0 MioEuro for Phase B2, with an HPS-share of 7.1 MioEuro for two years. In total, the Phase B2/C/D/FM2 contract amounts to 110 Mio Euro until the PFM Satellite launches in 2027 and until the delivery of the FM2 LEA-reflector-subsystems in 2028. The share of HPS Germany values to 26 Mio Euro, which results in an average of 3.2 MioEuro per year, and which assures 15-20 high quality jobs.

HPS CEO Ernst K. Pfeiffer commented: “We are all very pleased to be able to make an active contribution to European non-dependence in an area of critical technology as a subcontractor to TAS-I, and to be able to assume global technology leadership with the innovation of an unprecedented rotating 8m Ka-band reflector subsystem in our portfolio. On behalf of the WeLEA-consortium, I would like to thank all those in Germany and throughout Europe who have supported our ten-year journey to this strategically, politically and technically magnificent position.”

The first phase, B2, includes the detailed design of an EQM. Central to this effort is an intensive breadboard test program, which will raise the few remaining critical elements of LEA to Technology Readiness Level (TRL) 5 within 6 months. As an example, a Ka-band mesh, the “European Space Mesh”, is being developed and produced by the new HPS/IPROTEX joint-venture “HPTEX” along with cooperation from Frauenhofer ISC, in Upper Franconia. Since this metal mesh needs to have an optimal design with respect to electromagnetic wave reflection and mechanical stretch parameters, intensive parameter studies are currently being undertaken. Promising initial results have already been achieved in pre-development.

And our next goals are already in sight: Hydroterra, ESA’s EE10 Candidate Mission which requires a deployable reflector of at least 7 meters in diameter; SENTINEL-1 NG Mission, requiring a single large reflector; and a Ka-Band Internet Broadband mission with 5-metre reflectors.

In addition to large deployable reflector subsystems, the main product lines of the HPS portfolio are classic 1-2 meter reflector antennas for science missions (e.g. Euclid & HERA) and telecommunication missions (e.g. Heinrich Hertz), as well as the world’s only operational product series of serially-manufactured satellite-de-orbit systems under the brand name “ADEO” for decommissioned satellites. By the end of 2021, the HPS Group, consisting of HPS Germany, HPS Romania and HPtex, will grow at least up to 100 employees.

HPS GmbH

Point of Contact: Dr. Ernst Pfeiffer, CEO
E-Mail: info@hps-gmbh.com
Telephone: +49 (89) 4520576-0

Igniting the Upper Stage on Europe’s path to technological non-dependence

ESA and Thales Alenia Space Italy (TAS-I) authorize HPS to develop the large deployable reflector subsystem “LEA” for the Copernicus mission CIMR

 It is official today, 02.12.2020: Europe is going to develop a new independent technology in the European space sector. Thales Alenia Space Italy has been selected by ESA and the European Commission as the Satellite Prime for the Copernicus mission CIMR contract. At the same time, HPS Germany, as leader of an SME-oriented consortium of 15 companies from seven countries (main partners are LSS, vonHoerner&Sulger and RUAG), were selected to develop the “Large Deployable Reflector Subsystem” (LDRS) called “LEA-K8r”. This large, 8-meter diameter reflector will be deployed in space and rotates about a non-symmetrical axis: a world first! Today, with this contract signature, HPS and the European consortium have been authorized to start the development with the phases B2/C/D.

 The CIMR-mission, in the context of the Copernicus Earth Observation Programs of the European Commission, provides a significant contribution to the „Integrated European Policy for the Arctic“, whose objective is an improved understanding of the effects of climate change, especially in the Arctic region, and thus will establish key requirements for the Arctic communities. The CIMR-mission will provide improved continuity (sub-daily) in the monitoring of floating sea ice in terms of spatial and temporal resolution. In addition, the instruments will provide global coverage of sea surface temperature measurements, but with a specific focus on the Polar Regions.

Authorized was now the first tranche with 23.0 MioEuro for Phase B2, with an HPS-share of 7.1 MioEuro for two years. In total, the Phase B2/C/D/FM2 contract amounts to 110 Mio Euro until the PFM Satellite launches in 2027 and until the delivery of the FM2 LEA-reflector-subsystems in 2028. The share of HPS Germany values to 26 Mio Euro, which results in an average of 3.2 MioEuro per year, and which assures 15-20 high quality jobs.

HPS CEO Ernst K. Pfeiffer commented: “We are all very pleased to be able to make an active contribution to European non-dependence in an area of critical technology as a subcontractor to TAS-I, and to be able to assume global technology leadership with the innovation of an unprecedented rotating 8m Ka-band reflector subsystem in our portfolio. On behalf of the WeLEA-consortium, I would like to thank all those in Germany and throughout Europe who have supported our ten-year journey to this strategically, politically and technically magnificent position.”

The first phase, B2, includes the detailed design of an EQM. Central to this effort is an intensive breadboard test program, which will raise the few remaining critical elements of LEA to Technology Readiness Level (TRL) 5 within 6 months. As an example, a Ka-band mesh, the “European Space Mesh”, is being developed and produced by the new HPS/IPROTEX joint-venture “HPTEX” along with cooperation from Frauenhofer ISC, in Upper Franconia. Since this metal mesh needs to have an optimal design with respect to electromagnetic wave reflection and mechanical stretch parameters, intensive parameter studies are currently being undertaken. Promising initial results have already been achieved in pre-development.

And our next goals are already in sight: Hydroterra, ESA’s EE10 Candidate Mission which requires a deployable reflector of at least 7 meters in diameter; SENTINEL-1 NG Mission, requiring a single large reflector; and a Ka-Band Internet Broadband mission with 5-metre reflectors.

In addition to large deployable reflector subsystems, the main product lines of the HPS portfolio are classic 1-2 meter reflector antennas for science missions (e.g. Euclid & HERA) and telecommunication missions (e.g. Heinrich Hertz), as well as the world’s only operational product series of serially-manufactured satellite-de-orbit systems under the brand name “ADEO” for decommissioned satellites. By the end of 2021, the HPS Group, consisting of HPS Germany, HPS Romania and HPtex, will grow at least up to 100 employees.  

HPS GmbH

Point of contact:  Dr. Ernst Pfeiffer, CEO
E-Mail: info@hps-gmbh.com
Phone: +49 (89) 4520576-0

Fourfold successful premiere for Europe’s non-dependence in space

Deployable 5-meter “LEA” antenna starts baptism of fire on the test stand Punctually three years after the decision of the EU, in November 2017, to place the development of the critical space technology of an antenna that can be deployed in space in the hands of an SME-consortium with 15 companies from seven member states led by the Munich-based antenna specialist HPS, the project celebrated four successful European premieres on November 10th 2020:

  • Installation of a 5m deployable reflector of and by LSS GmbH
  • First surface accuracy check of this reflector
  • First RF (Radio-Frequency) test of the complete reflector
  • First successful application of highly innovative RF-test technology.

The space programs of ESA and the EU reflect the enormous importance of research and application projects from earth observation and telecommunications for the development of independent ecological and economic positions in politics and business. The first prerequisite for this is the unrestricted availability of the communication capabilities and image data collection of corresponding satellites – and thus of their antennas. In order to save weight and storage, more and more deployable constructions are being planned here, which have so far only been available in the USA. Europe has now put a stop to this dependence.

The 5-meter antenna (now under test) under the designation “LEA-X5”, is intended for X-band communication. The surface accuracy of the reflector, developed since the beginning and assembled now by LSS for many months, was measured by HPS with laser radar technology from NIKON. The element of the antenna responsible for the reflection, the gold plated metal mesh under the designation “ESM-European Space MESH”, is also compatible with the higher Ku-band. It is manufactured by HPTEX, a joint venture of HPS and Iprotex in cooperation with Fraunhofer in Münchberg. The high-precision carbon fiber struts were developed by the Portuguese company “FHP”, while unfolding electronics were supplied by the Schwetzingen Company “von Hoerner & Sulger”.

Also the adherence to all interlinked corridors of the participants all over Europe to realize this early test date was successful despite considerable organizational complications caused by the Covid-19 pandemic: “operative flexibility in teamworking, technical genius and the unconditional will to succeed – these are the decisive factors especially in these times. And the WeLEA example shows once again: These are medium-sized companies,” says HPS CEO Pfeiffer. And the CEO of LSS, Leri Datashvili adds: “it has been a very hard work of the LSS team after having collected all the needed components and materials from partners to have designed and built a 5 m large deployable reflector in a very short time reaching the high quality of the RF surface shape, which is now ready for the RF tests”.

Now the reflector will be characterized in several frequency ranges (C to Ka-Band) from Airbus over the next 3 weeks in Ottobrunn. Special ground support mechanisms from the Portuguese company INEGI ensure that the reflector is positioned horizontally. The prediction of the antenna performance was carried out by the Danish company TICRA with the help of their special RF software GRASP, with geometrical data from LSS simulations.   In the next step, not only the reflector, also the deployable arm of the antenna will be tested environmentally at INTA in Spain; the focus will be on compliance with vibration, shock and thermal vacuum requirements. Beginning next year intensive deployment tests will follow finally. The entire test campaign will be concluded with PFM (proto-flight model) status in March 2021. 

In parallel, WeLEA is already working on an 8-meter Ka-band capable engineering model “LEA-K8r” (reflector and arm) in contract to ESA, as preparation for the technical realization of the polar cap mission CIMR (Copernicus Imaging Microwave Radiometer), which will help Europe to gain its own and politically unbiased picture of the status of climate change. The first deployment tests are planned here for the first quarter 2021. 

About WeLEA:
The European SME dominated „WeLEA“-SME-consortium consists of the following European space companies: HPS (prime contractor, DE), LSS (main partner for the reflector, DE), RUAG (DE), FHP (PT), vH&S (DE), Luma (SE), Invent (DE), HPtex (DE), ARQUIMEA (SP), etamax (DE), TICRA (DK), WSS (DE), Inegi (PT), INTA (SP), ONERA (FR). The consortium is strengthened in the H2020-LEA-X5 project on system- and test-side by OHB (DE), TAS (FR) and Airbus (DE).

 

HPS GmbH

Point of contact:  Dr. Ernst Pfeiffer, CEO
E-Mail: info@hps-gmbh.com

Phone: +49 (89) 4520576-0

SpaceTech’s EM of MERLIN frequency reference unit ready

Immenstaad, 27 September 2018: The German-French satellite MERLIN (Methane Remote Sensing LIDAR Mission) is a mission to observe the concentration of the greenhouse gas methane. In this cooperation between CNES and DLR, CNES signs responsible for the satellite bus, which is a Myriade Evolution, and DLR signs responsible for the instrument. The instrument on MERLIN is a pulsed high power LIDAR (Light Detecting and Ranging) operating precisely at the methane absorption lines at 1645.55 nm wavelength. The instrument emits two different wavelengths called ‘online’ and ‘offline’: Online means located in the absorption feature and offline beside it for reference purposes.

To enable the required emission wavelengths around 1645.5-1645.7 nm, a frequency reference unit (FRU) is part of the instrument on the satellite. The frequency reference unit contains a methane gas cell, several diode lasers (1064 nm and 1645 nm emission wavelength), a wavemeter and the associated control electronics including an FPGA for stabilizing the diode laser emissions and the high power laser pulse frequency to the methane cell and the wavemeter. The FRU is delivering its optical signals to the high power laser and measures their wavelengths and the ones of the high power laser pulses to MHz accuracy. In addition it performs the wavelength stabilization control loops for the internal diode laser and of the OPO of the high power laser.

One and a half years after the start phase C/D, SpaceTech GmbH delivered the CDR data package for the frequency reference unit to Airbus and DLR. The co-location took place on the 25th and 26th of July 2018 at the SpaceTech premises in Immenstaad, Germany. All RIDs have been closed and no showstoppers for the CDR have been found. The engineering model has been built and  its final testing phase has started.

After the successful operation of the LRI on GRACE-FO in orbit, the development of the frequency reference unit is the next major C/D development activity for a laser-optical instrument at SpaceTech.

Key and driving requirements of the FRU are:

  • 5 mW of optical output power at 1645 nm with a laser frequency accuracy and stability of  10 MHz
  • 10 mW of optical output power at 1064 nm with less than 1 MHz linewidth
  • Measurement of every single transmitted pulse with a systematic error of less than 8 MHz
  • Controlling the cavity of the optical parametric oscillator in the main laser

Links:
DLR Site in MERLIN (http://www.dlr.de/rd/desktopdefault.aspx/tabid-2440/3586_read-31672/)
Animated in orbit maneuvers of the MERLIN satellite: https://www.youtube.com/watch?v=tmlSAB-ltek
Scientific publication: http://www.mdpi.com/2072-4292/9/10/1052

Das diesem Bericht zugrundeliegende FE-Vorhaben wird im Auftrag des Bundesministeriums für Wirtschaft und Energie (BMWi) unter dem Förderkennzeichen 50EP1301 durchgeführt. Die Arbeiten sind Teil einer Kooperation zwischen DLR Raumfahrt-Management und CNES beim deutsch-französischen MERLIN-Satellitenprojekt. STI führt die Arbeiten im Unterauftrag der Firma Airbus DS GmbH, Ottobrunn durch. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

SpaceTech GmbH (STI)

Point of contact: Dr. Kolja Nicklaus
E-Mail: business@spacetech-i.com
Phone: +49 (7545) 932 84 86

Best of Space at Industry Space Days ISD2018 of ESA

CRN Management presents the portal of German Space SMEs www.best-of-space.de at the Industry Space Days 2018 of ESA in ESTEC, Noordwijk, NL from 11. to 12. September 2018.

You are invited to meet us at booth K24, right next to the ESA-village to meet with experts form German Space Companies.

Some German SMEs have a booth of their own, see floorplan.

CRN Management GmbH

Point of contact: Jens Janke
E-Mail: jens.janke@crn-management.de
Phone: +49 (228) 5344-9144